

Medición de la aceleración de la gravedad mediante sistema fotosensor – placa detectora

Y. Fernández⁽¹⁾, M. Guariste⁽²⁾, P. Correa⁽³⁾

(1)yoko_6_10@hotmail.com, (2)maxi_862@hotmail.com, (3)pablogcorrea@hotmail.com

Física Experimental I, Facultad de Ciencias Exactas, UNICEN

Resumen

En este trabajo se buscó mejorar el valor de la aceleración de la gravedad g obtenido en un trabajo previo $^{[1]}$ que fue de $g = 10.7 \pm 0.6 m/s^{-2}$, ya que el valor de g hallado con técnicas mas precisas^[2] no se encuentra dentro de este intervalo. Se utilizó el método de caída libre y a la vista del resultado se plantea un cambio en el modelo teórico utilizado.

Introducción

Un objeto en caída libre se mueve únicamente bajo la influencia de la gravedad.

Hipótesis:

- Se desprecia resistencia del aire
- g no varía con la altura

g: aceleración de la gravedad

$$h = \frac{1}{2}gt^2 + v_0t$$

 $h = \frac{1}{2}gt^2 + v_0t$ (1) h: distancia recorrida t: tiempo de caída v_o : velocidad inicial

Para el caso especial de $v_0 = 0 \implies h = \frac{1}{2}gt^2$ (2)

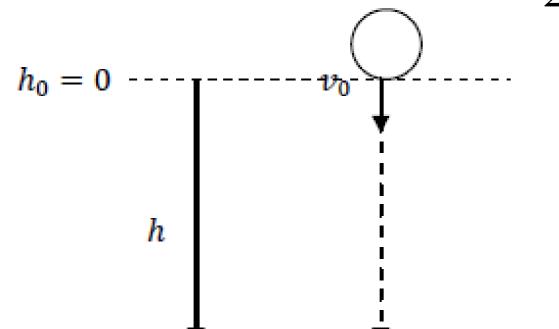
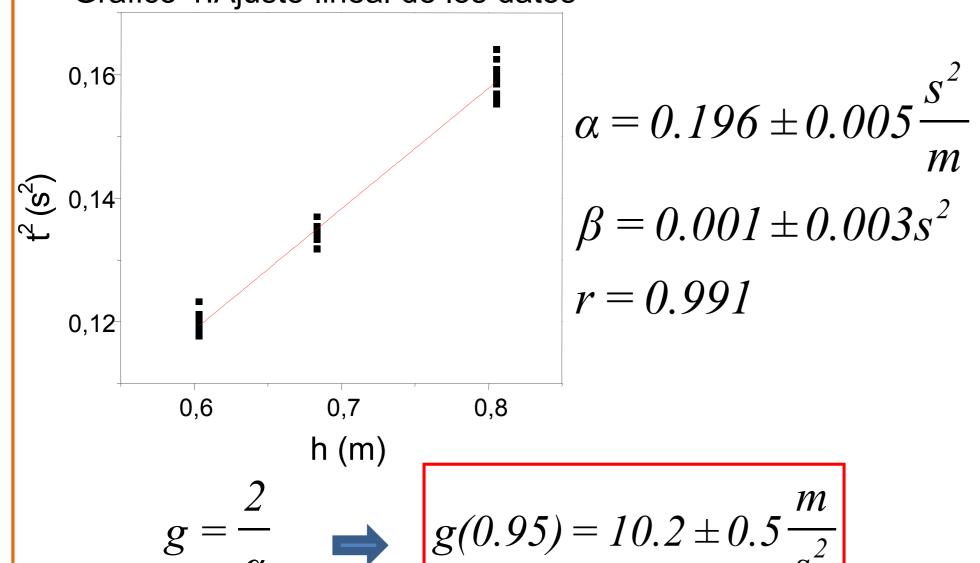



Figura 1: Representación esquemática de caída libre

Resultados

Para $v_o = 0$ se tiene de (2) $t^2 = \frac{2}{g}h$ Gráfico 1:Ajuste lineal de los datos

Referencias

[1] Estevez, Medrano, Muguiro, Medición de la aceleración de la gravedad mediante una cámara digital convencional, Física Experimental I, 2010.

[2] Información brindada por el Dr. A. Introcaso, Grupo de geofísica del Instituto de Física de Rosario

Desarrollo Experimental

Se dejó caer un cuerpo esférico de tres alturas distintas.

Se colocó el fotosensor lo más cerca posible del cuerpo para considerar $v_0 = 0$

El fotosensor iniciaba la medición del tiempo al comenzar la caída y la detenía cuando el cuerpo impactaba en la placa detectora.

$$h_1 = 0.805 \pm 0.001m$$

$$h_2 = 0.683m$$

$$h_3 = 0.603m$$

Para cada altura se realizaron 10 mediciones de t

Figura 2: Sistema fotosensor-placa

Análisis

El resultado representa el intervalo $(9.7 - 10.7) \frac{m}{2}$ donde sí se encuentra el valor de g hallad δ con técnicas más precisas^[2]. El valor obtenido $g=10.2m/s^{-2}$ es por exceso. Se puede lograr un valor mas exacto si se aumenta la pendiente α , esto indicaría que los t se midieron por defecto. Al considerar el modelo con $v_{\alpha} \neq 0$ se podría expresar (1) así

$$\frac{2}{g}h + \frac{{v_0}^2}{g^2} = \left(t + \frac{v_0}{g}\right)^2 \quad donde \quad t' = t + \frac{v_0}{g}$$

es efectivamente mayor que t. Además se puede estimar una $v_0 \approx 0.16 \frac{m}{s}$ que corresponde a una distancia de separación $\Delta h \approx 0.001 m$ entre el cuerpo y el fotosensor.

Conclusión

Se obtuvo un valor de g más preciso y exacto que en el trabajo previo para la experiencia de caída libre. El modelo de $v_o \neq 0$ puede ajustarse mejor a las observaciones.